ECHINODERMATA

Where we are...

Echinodermata Taxonomy

Subphylum Asterozoa Class Stelleroidea Subclass Asteroidea – sea stars Subclass Ophiuroidea – brittle & basket stars Subphylum Crinozoa Class Crinoidea – sea lilies & feather stars Subphylum Echinozoa Class Echinoidea – sea urchins & sand dollars Class Holothuroidea – sea cucumbers

Echinodermata Taxonomy

Subphylum Asterozoa

Class Stelleroidea

Subclass Asteroidea – sea stars

Subclass Ophiuroidea – brittle & basket stars

Subphylum Crinozoa

Class Crinoidea – sea lilies & feather stars

Subphylum Echinozoa

Class Echinoidea – sea urchins & sand dollars

Class Holothuroidea – sea cucumbers

General Echinoderm

Mutable Connective Tissue (MCT)

- Reversibly vary rigidity of dermis
- Under nervous control
- Tissue matrix stiffened by Ca²⁺

- Feeding
- Defense
- Autotomy
- Asexual reproduction

Water Vascular System (WVS)

- SUPER COOL!
- Echinoderm hydraulic system with diverse function
- Podia
 - Ambulacral Grooves/Zones
 - Locomotion, Gas exchange
 - Longitudinal muscles

Echinodermata Taxonomy

Subphylum Asterozoa Class Stelleroidea Subclass Asteroidea – sea stars Subclass Ophiuroidea – brittle & basket stars Subphylum Crinozoa Class Crinoidea – sea lilies & feather stars Subphylum Echinozoa Class Echinoidea – sea urchins & sand dollars Class Holothuroidea – sea cucumbers

Echinodermata Taxonomy

Subphylum Asterozoa

Class Stelleroidea

Subclass Asteroidea – sea stars

Subclass Ophiuroidea – brittle & basket stars

Subphylum Crinozoa

Class Crinoidea – sea lilies & feather stars

Subphylum Echinozoa

Class Echinoidea – sea urchins & sand dollars Class Holothuroidea – sea cucumbers

Subphylum Asterozoa: Class Stelleroidea

- Defining character:
 Arms/Rays extend from a central disc
- Two subclasses
 - Subclass Asteroidea sea stars
 - Subclass Ophiuroidea brittle stars
- Recently grouped into one class based on fossil and molecular evidence

Subclass Asteroidea

- Seastars!
- ~ 1600 extant taxa
- Defining character:
 - Gonads & digestive tract extend into each arm

Asteroidea WVS

Asterozoa Stelleroidea Asteroidea Ophiuroidea

• Well developed – used for...

- Locomotion
- Adhesion
- Prey manipulation
- Gas exchange

Asteroidea WVS

Asterozoa Stelleroidea Asteroidea Ophiuroidea

Lined by myoepithelium – ciliated and muscular

- Parts of the Asteroid WVS:
 - Madreporite brings water into WVS
 - Stone canal leads from <u>madreporite</u> to ring canal
 - Ring canal cicumoral canal leads to radial canals
 - Polian vessicle & Tidemann's bodies – sacs attached to ring canal, maintain turgor
 - Radial canal extend into rays and connect with ampullae
 - Ampullae bulb shaped sacs that pump fluid into podia
 - Podia tube feet

Asteroidea Reproduction

- Asexual
 - May autotomize limbs & regenerateUsually must have portion of central disc

Asteroidea Reproduction

- Sexual
 - Most are dioecious
 - Generally have 10 gonads 2 per arm
 - Most broadcast spawn seasonally
 - One female may shed 2.5 million eggs
 - Some cold water species are brooding direct developers

Asterozoa

Stelleroidea

Asteroidea

Ophiuroidea

Asteroidea Feeding

- Wide variety of feeding styles:
 - External digestion by everting stomach
 - Ciliary-mucous feeding
 - Catch fish with pedicellaria
 - Dig through substrate for bivalves
 - May have general or specialized diet

Asteroidea Defense

Asterozoa Stelleroidea Asteroidea Ophiuroidea

• How might asteroids defend themselves?

- Run away
- Adhere to substrate
- Venom
- Camouflage
- Pedicellaria
- SLIME!!!

Echinodermata Taxonomy

Subphylum Asterozoa

Class Stelleroidea

Subclass Asteroidea – sea stars

Subclass Ophiuroidea – brittle & basket stars

Subphylum Crinozoa

Class Crinoidea – sea lilies & feather stars

Subphylum Echinozoa

Class Echinoidea – sea urchins & sand dollars Class Holothuroidea – sea cucumbers

Subclass Ophiuroidea

- Brittle & Basket Stars!
- ~ 2100 species
- Most 1-3cm diameter, some up to 1m armspan
- Wide variety of cryptic lifestyles
 - Symbioses (only symbiotic echinoderm)
- Defining characters:
 - Ten bursae
 - Arms composed of jointed calcareous vertebrae

Defining Characters

- Bursae invaginations on the oral surface of the disc
 - Ten bursae usually present
 - Extend into coelomic cavity
 - Seawater circulated through bursae with cilia and muscular contraction
 - Gas exchange, possibly waste removal, some brood embryos in bursae
- Arms composed of calcareous vertebrae

Ophiuroid WVS

- Similar to asteroid WVS except:
 - Madreporite is positioned orally
 - May possess multiple madreporites
 - Ampullae are absent
 - Contraction of radial canal moves podia

Ophiuroid locomotion

- Fast for echinoderms
- Tube feet rarely used to move, usually only for food manipulation and burrowing
- Brittle stars use long arms to move across the substrate
- Basket stars may brace themselves in position with their arms

Ophiuroid Feeding & Digestion

- Digestive system confined to central disc
- Ophiuroids lack an anus
- Many feeding strategies
 - Carnivores
 - Scavengers
 - Deposit feeders
 - Suspension feeders

Carnivory

- *Ophioderma* lassos small crustaceans with arms and transfers prey to mouth
- If offered unlimited crustaceans in a lab setting, it will eat until the disc ruptures!

Ophiuroid reproduction

- Asexual
 - Clonal reproduction by fission of central disc into two pieces
 - Larvae may cast off an arm which regenerates an entire body

Ecology

- Globally distributed
- Common in Puget Sound
- Very large biomass in deep soft bottom habitats
 Ophiothrix fragilis can reach densities of 2000/m²

Echinodermata Taxonomy

Subphylum Asterozoa Class Stelleroidea Subclass Asteroidea – sea stars Subclass Ophiuroidea – brittle & basket stars Subphylum Crinozoa Class Crinoidea – sea lilies & feather stars Subphylum Echinozoa

> Class Echinoidea – sea urchins & sand dollars Class Holothuroidea – sea cucumbers

Crinozoa Crinoidea

Subphylum Crinozoa: Class Crinoidea

- Defining character:
 Body held above substrate by stalk or grasping <u>cirri</u>
- 700 extant species
 100 sea lilies (4 orders)
 600 feather stars (1 order)
- Very ancient class
 - Some extinct species were over 65 feet tall!

Characteristics

- Stalk or cirri
- (semi)sessile suspension feeders

Crinozoa

Crinoidea

- Oral surface up
- Food collected with tube feet
- Regeneration
- Often on coral reefs

Crinoidea Anatomy

Crinozoa Crinoidea

Crinoidea Feeding

• Passive suspension feeders

Crinozoa

Crinoidea

- Extend all appendages
- Podia secrete mucous
- Food caught & flicked into <u>ambulacral groove</u>

Crinoidea Locomotion

- Sea lilies
 - Stalk contains no musculature
 - MCT orients body
- Feather stars
 - Cirri cling to substrate

Crinozoa

Crinoidea

- Crawl terminal hooks on arms
- Swim

Crinozoa Crinoidea

Crinoidea WVS

- Similar to seastar except...
 - No madreporite
 - Ring canal has numerous stone canals opening into coelem
 - WVS connected to environment though ciliated tubes that penetrate tegem
 - Ampullae absent

Crinoidea Reproduction

• No asexual reproduction

Crinozoa

Crinoidea

- Dioecious
- Gonads in pinnules
- Spawn by rupturing pinnule walls
- Some brood, viviparous

Echinodermata Taxonomy

Subphylum Asterozoa Class Stelleroidea Subclass Asteroidea – sea stars Subclass Ophiuroidea – brittle & basket stars Subphylum Crinozoa Class Crinoidea – sea lilies & feather stars Subphylum Echinozoa Class Echinoidea – sea urchins & sand dollars Class Holothuroidea – sea cucumbers

Subphylum Echinozoa:

- 'Defining character': – Lack arms
- Two classes
 - Class Echinoidea sea urchins, heart urchins, sand dollars
 - Class Holothuroidea sea cucumbers

Class Echinoidea

- Sea urchins, heart urchins & sand dollars!
- ~ 1000 extant species
- Body is spherical or flattened to a disc
- 6-40+cm in diameter
- Defining characters:
 - Ossicles form a rigid test
 - Podia pass through ambulacral plates
 - Have complex mouthparts called an <u>Aristotle's Lantern</u>

Echinoid Anatomy

- Ossicles form plates that fit together as an inflexible test
- Grow through addition of calcareous material to edged of existing ossicle & formation of new ossicles
- Podia pass through pores in the ambulacral zone
- <u>Interambulacral zone</u> is devoid of tube feet, spines are prominent
 - 5 ambulacral plates, 5 interambulacral zones
 - Podia have well developed suction cups at ends

Echinoid Anatomy

- Aristotle's Lantern
 - Highly developed mouthparts
 - Ossicles & muscles
 - 5 primary ossicles, up to 35
 - Mouth is surrounded by the peristomial membrane & 5 large <u>buccal podia</u>
 - Some may have gill outfoldings around mouth
 - Teeth can protrude from the mouth

Can Urchins See?

Echinozoa Echinoidea Holothuroidea

- Urchins placed in arena with different sized dark circles
- Movement of urchin recorded
- Urchins moved toward/away from larger 10 degree target
- Have photosensitive test
- Whole body may act like a compound eye

Yerramilli & Johnsen, 2010

Echinoid Feeding & Digestion

 Most sand dollars are suspension & deposit feeders

Echinozoa

Echinoidea

Holothuroidea

- Most urchins are algal grazers
 - Many also eat invertebrates and sediment
- No true stomach
- Anus located aborally

Locomotion

- Urchins
 - Spines & podia used
 - Spines can scrape into rock
 - Urchins hold spines low in high flow
- Sand dollars
 - Use spines instead of tube feet
 - Adapted to soft substrate

Echinoid WVS

• Essentially the same as asteroids!

Reproduction

- All dioecious
- Generally 5 gonads
- Gonad empties aborally through gonoduct to gonopore

Echinozoa

Echinoidea

Holothuroidea

• Mostly broadcast spawners, some brood

Urchin Ecology

- Urchin barrens
 - Herds of urchins
 - Consume entire kelp forests
 - Reduce diversity of their habitat
 - Often controlled by otters

Echinodermata Taxonomy

Subphylum Asterozoa Class Stelleroidea Subclass Asteroidea – sea stars Subclass Ophiuroidea – brittle & basket stars Subphylum Crinozoa Class Crinoidea – sea lilies & feather stars Subphylum Echinozoa Class Echinoidea – sea urchins & sand dollars Class Holothuroidea – sea cucumbers

Subphylum Holothuroidia:

- Defining Characteristics
 - Vermiform body
 - Small ossicles embedded in body wall
 - Respiratory trees
- ~1200 species

Respiratory Trees

- Specialized respiratory structures
- Paired inside body cavity
- Cloaca pumps water across trees
- Some fish live symbiotically inside cucumber
- Enters through cloaca

Holothuroidian Anatomy

- Most have layers of circular & longitudinal muscles in body
- Podia confined to ambulacral strips
- Mouth surrounded by feeding tentacles
- <u>Cloaca</u> on aboral end used for respiration and waste elimination
- Many body forms!

Holothuroidian WVS

- Similar to other echinoderms
- Ring canal supported by calcareous ring
- Madreporite suspended inside coelem
- Often have large Polian vessicles

Locomotion

- Generally slow, many sessile
- Pelagic species swim
 - Webbed papillae that form fins
- Burrowing
 - Peristalsis
- Crawl
 - Tube feet
- Drag themselves
 - Buccal podia

Holothuroidian Defense

- Bright coloration
- Fill with water turgid
- <u>Cuverian tubules</u>
 Sticky and/or toxic
- True evisceration

Holothuroidian Reproduction

- Only have one gonad – unique in echinodermata
- Most dioecious
- Mid dorsal gonopore opens between two buccal podia
- Most free spawn, some brood

Holothuroidian Ecology

- Holothuroids comprise large portion of deep sea biomass
- Filter feeders remove particulates from water
- Cucumbers may pass up to 130 kg of substrate through their digestive system per year!

