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Summary

Microbial processes largely control the health and
resilience of coral reef ecosystems, and new tech-
nologies have led to an exciting wave of discovery
regarding the mechanisms by which microbial com-
munities support the functioning of these incredibly
diverse and valuable systems. There are three ques-
tions at the forefront of discovery: What mechanisms
underlie coral reef health and resilience? How do
environmental and anthropogenic pressures affect
ecosystem function? What is the ecology of microbial
diseases of corals? The goal is to understand the
functioning of coral reefs as integrated systems from
microbes and molecules to regional and ocean-basin
scale ecosystems to enable accurate predictions of
resilience and responses to perturbations such as
climate change and eutrophication. This review out-
lines recent discoveries regarding the microbial
ecology of different microenvironments within coral
ecosystems, and highlights research directions that
take advantage of new technologies to build a quan-
titative and mechanistic understanding of how coral
health is connected through microbial processes to
its surrounding environment. The time is ripe for
natural resource managers and microbial ecologists
to work together to create an integrated understand-
ing of coral reef functioning. In the context of long-
term survival and conservation of reefs, the need for
this work is immediate.

Introduction

A healthy coral reef functions as a finely tuned microbially
driven system that excels at capturing and recycling
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nutrients in oligotrophic waters and its intricate three-
dimensional structure allows for niche partitioning that
supports astounding biodiversity and productivity. Indi-
vidual reef-building corals embody this paradigm-animals
living symbiotically with algae, viruses, bacteria, archaea
and protists distributed in spatially distinct patterns to
function as holobionts (Knowlton and Rohwer, 2003;
Ainsworth et al., 2010). The great complexity of coral reef
microbial ecology has until recently resisted functional,
mechanistic and system-based analyses (Wild etal,
2011). Novel molecular, biochemical and imaging
advances have opened up the field and promise exciting
fundamental discoveries. The time is ripe to deepen our
understanding of these ‘captive’ systems in intimate
contact with the pelagic realm of the sea, and discover the
mechanisms by which they exist as an integrated, micro-
bially supported system within the surrounding water and
sediment environments.

There are three overarching questions currently at the
forefront of discovery in coral reef microbiology. What are
the mechanisms underlying coral reef health and resil-
ience? How do environmental and anthropogenic pres-
sures affect reef ecosystem function? What is the ecology
of microbial diseases of corals? The rapid decline of coral
reefs globally creates a pressing need to answer these
questions (Hughes et al., 2010). The goal is to understand
the functioning of coral reefs as integrated systems from
microbes and molecules to regional and ocean-basin
scale ecosystems to enable accurate predictions of eco-
system resilience and responses to environmental pertur-
bations such as climate change and eutrophication.

The sediment, coral and water environments of a reef
are often studied in isolation of each other. A key compo-
nent for answering all three of the driving questions is to
uncover and quantify the mechanisms that tie these envi-
ronments together into a single functioning ecosystem.
For instance, we know that reef sediments generally have
10 000 times more bacteria than the surrounding seawa-
ters (~10° cells cm= sediment versus ~10° cells ml~' sea-
water), and that coral-associated bacterial abundances
are reported to range widely from approximately 1 x 10? to
6 x 107 cells per cm? (Coffroth, 1990; Koren and Rosen-
berg, 2006). However, the mechanisms within these
different niches by which bacterial growth rates or
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community composition, for example, may aid in maintain-
ing the stability and health of the coral holobiont have not
yet been explored. Fortunately, new tools are now avail-
able that allow for a quantitative microbial ecology
approach to discovering the mechanisms underlying
these interactions and determining their relative roles in
ecosystem function. The goal of this review is to outline
recent discoveries in microbial ecology of the different
environments within coral reef ecosystems, and to high-
light research directions that, with the help of coral reef
managers, will build a quantitative and mechanistic under-
standing of how holobiont health and resilience is con-
nected to the microbial ecology of the environment in
which it lives.

The coral holobiont

Reef-building corals are covered in a surface mucus layer
composed of proteins, lipids, and polysaccharides (Brown
and Bythell, 2005; Tremblay et al., 2011). Glycoproteins,
in particular, are likely to be the mucus constituent respon-
sible for its gelling properties and function (Jatkar et al.,
2010). The microbial communities inhabiting this surface
region and the coral tissue below it have been studied
more than any other bacterial niche of the reef environ-
ment. These communities are thought to be an important
component of a coral’s ability to adapt to environmental
change (Reshef et al., 2006), and perhaps to function as
a single unit together with the coral animal and its other
symbionts on which evolutionary selection acts (Rosen-
berg et al., 2007). Two recent articles (Ainsworth et al.,
2010; Mouchka etal., 2010) offer an overview of the
immense diversity and the specificity of coral-bacteria
associations, the onset of these associations (also see
Sharp et al., 2010), and many of the roles we currently
understand microbes to play in coral health. These roles
include subsidizing the host nutrient budget through nitro-
gen, carbon, and sulfur cycling, and assisting in disease
resistance through the secretion of antimicrobial com-
pounds to exclude colonization by exogenous bacteria.
Additionally, Bourne and colleagues recently reviewed
much of the research on coral diseases, and showed that
while the ecology of a handful of pathogens has been
elucidated, the study of most coral diseases will benefit
from an integrated understanding of coral reef microbial
ecology and access to new technologies and concepts
from the biomedical field (Bourne et al., 2009, also see
Mao-Jones et al.,, 2010). Thus, we will focus our discus-
sion of the holobiont on discoveries made since the pub-
lication of those articles.

A number of recent advances have been made by
applying the most current technologies available to the
study of the holobiont. This exciting progress has
opened new doors for mechanistically linking microbial

ecology interactions within the holobiont to changes in
the surrounding environments. For instance, pyro-
sequenceing has enabled the discovery of 17 metallo-
protease genes in the genome of the coral pathogen
Vibrio coralliityticus that are potentially involved in its
virulence (de O Santos et al., 2011), as well as substan-
tially higher levels of diversity (Shannon Index of 6.71)
and seasonal variability in bacterial community compo-
sition associated with a scleractinian coral than previ-
ously recognized (Chen etal, 2011). Further, reef-
associated algae have been identified as potential
reservoirs of coral disease-associated bacteria (Barott
et al., 2011). Ultra-performance liquid chromatography —
tandem quad mass spectrometry (UPLC-MS/MS) was
recently used to identify different responses in cyano-
toxin production by several strains of black band disease
(BBD)-associated cyanobacteria, often found to co-occur
in an infection, to variations in environmental conditions
(Stanic etal, 2011). Quantitative and real-time poly-
merase chain reaction (QPCR and RT-PCR) techniques
have also been applied to the coral holobiont to eluci-
date functional changes in the microbial members of the
community over the course of disease progression
(Bourne etal., 2011). Uncovering the mechanisms of
reef function with the aid of these new technologies is
becoming ever more accessible, and the insights gained
are now recognized as necessary for understanding the
resilience of the ecosystems and developing effective
conservation strategies. One fundamental research
objective is to use these new technologies to spatially
resolve where different microbial processes are taking
place within the holobiont and what mechanisms
mediate these processes. We know that bacteria can
have spatially defined distributions within the holobiont
(e.g. skeleton, gastrodermis, epidermis and surface
mucus layer), but we know very little about how that
distribution affects their function and their interactions
with other members of the holobiont.

Mucus as a connection and source of structure

Within the holobiont, the mucus itself is an important
energetic and ecological link between the coral animal
and the surrounding water and sediment environments in
which it lives (Rasheed et al., 2004; Wild et al., 2004a,b;
2005; Naumann et al., 2009; Mayer and Wild, 2010).
Mucus can play a role in structuring the coral-associated
microbial communities while attached to the coral (Ritchie,
2006), and once dissociated from the coral, can select for
otherwise rare microbial members of the water community
(Allers et al., 2008). Microbial ecologists have proposed
consideration of the marine environment as a size con-
tinuum of organic matter, ranging from truly dissolved
organic molecules to large particles of detritus visible to
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Fig. 1. Coral in the context of the marine organic matter continuum
(of both size and phase).

the naked eye (Azam and Malfatti, 2007). This concept
can be applied to the corals themselves, which might be
envisioned as essentially a heterogenous organic matter
continuum extending through the organic matter mucus
into the environment (Fig. 1).

This framework allows the path of mucus to be fol-
lowed as it morphs through a variety of microscale
microbial habitats embedded in the organic matter con-
tinuum, connecting the microbial communities of the
holobiont to those in the surrounding seawater and sedi-
ments, and providing a variety of physical architectures
for microbial interaction. For instance, as mucus sloughs
off from the coral into the surrounding water it can dis-
solve (van Duyl and Gast, 2001) (potentially fuelling
water column microbial production), floc (to be eaten by
larger detritivores or degraded by microbes), or sink (to
be consumed by sediment microbial communities)
(Vacelet and Thomassin, 1991; Huettel et al., 2006; Wild
etal. 2006; Naumann etal., 2009; Mayer and Wild,
2010) (Fig. 2). In the context of studying the mecha-
nisms of health and resilience of coral reefs, quantifying
the magnitude and variability of these fluxes, and how
they respond to perturbation is a major research subject.
Clarifying the role of microscale architecture in these
mechanisms is also important: if the spatial distribution
of organic matter in the water column changes, would
the distribution of coral-associated microbiota also
change?

Coral reef waters

Researchers have explored the microbial processes
occurring in a variety of reef water habitats — everywhere
from remote atoll lagoons (Sorokin, 1978; Yoshinaga
et al., 1991; Torreton and Dufour, 1996a,b; Torreton et al.,
2000; Rochelle-Newall et al., 2008) to the water overlay-
ing heavily anthropogenically influenced coastal reefs
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(Gast etal, 1999; van Duyl et al., 2002; Garren et al.,
2008; Hoch et al., 2008). A common theme that appears
across these diverse habitats is that the benthos influ-
ences the water column environment, and it does so at
several different scales.

At the scale of individual colonies, a coral influences the
niche structure for microbes at the millimetre to centimetre
scale. Corals can release large quantities of dissolved
organic carbon [DOC; 2-25 uM (mg protein)~' day'] and
dissolved organic nitrogen [DON; 0.5-3 uM (mg protein)~’
day'] (Ferrier-Pages et al., 1998; Naumann et al., 2010),
and water in contact with the coral surface can be
enriched in labile DOC, have significantly higher bacterial
specific growth rates than surrounding water, and have
elevated oxygen concentrations compared with water
overlaying algal-dominated substrate (van Duyl and Gast,
2001; Wild et al., 2010; Tanaka et al., 2011). Some coral
species have been shown to consume bacterioplankton
directly as a source of phosphorus, nitrogen and up to
20% of their carbon demand (Johannes etal., 1972;
Sorokin, 1973a,b). This is consistent with observations
that cavities in the reef framework can have 29% less
bacterioplankton and 15% less DOC than surround reef
water (de Goeij and van Duyl 2007). Furthermore, 12-cm-
long transects from the surface of corals have shown an
average of a twofold increase in bacterial abundance and
a 3.5-fold increase in virus-like particle (VLP) abundance
in the 4 cm of water nearest to the surface (as compared
with the abundances 8-12 cm away) (Seymour et al.,
2005). High DNA (HDNA) bacterial cells, a measure of the
proportion of actively dividing cells, were also most abun-
dant in the 4 cm closest to the coral surface (Seymour
et al,, 2005) and were 10% higher above live coral sur-
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Fig. 2. Mucus is an important physical connection among the
holobiont, water column and sediment microbial microenvironments
within a coral reef ecosystem.
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faces than in water 1 m away despite the fact that total
bacterial abundances were lower (Patten et al., 2006).
The physiological state of the coral colony can influence
these small-scale habitats. For instance, VLPs can be
30% more abundant in the 12 cm above diseased corals
compared with healthy and dead colonies (Patten et al.,
2006).

At the larger scale of a single reef, phytoplankton and
bacteria abundances in the water column can be depleted
by the filter feeding action of the benthos (Linley and
Koop, 1986; Yahel et al., 1998; 2006; Gast et al., 1999;
Genin et al., 2009) and the size structure of phytoplankton
communities can be shifted towards larger cells by size-
selective filter feeding (van Duyl et al., 2002). The con-
centrations of DOC and bacterial cells can become
depleted over the scale of several kilometres even on a
rapidly flushed reef (Nelson et al., 2011). Phytoplankton,
bacteria and virus blooms can all be stimulated by coral
mass spawning events (Patten et al., 2008; Wild et al.,
2008), as can changes in bacterial community composi-
tion (Apprill and Rappe, 2011). The physical oceanogra-
phy of a reef can also drastically influence the observed
nutrient levels and fluxes. An internal tidal bore, for
instance, can increase nutrient concentrations 10- to
40-fold relative to non-bore conditions (Leichter et al.,
2003).

Evidence suggests that nitrogen metabolism and pro-
duction rates of bacterioplankton in reef waters are sen-
sitive to eutrophication (Hoch et al., 2008). However, in
general, the large-scale mechanisms controlling nutrient
fluxes and their relationship to microscale processes that
may be critical for individual coral health remain to be
identified. For instance, it would be useful to know if there
are microscale hotspots of nutrient cycling and regenera-
tion that influence the large-scale patterns we observe or
if spatial heterogeneity plays a role in regulating the flux of
nutrients from the water column into the coral holobiont,
perhaps by the action of coral-associated bacteria and
archaea.

Reef sediments

In shallow reef habitats, the water column is usually well
mixed and sediment resuspension can shape the micro-
bial seascape and create interaction opportunities among
the benthic, water column and coral microbial communi-
ties (Yahel et al., 2002; Rasheed et al., 2004). Reef sedi-
ments are generally well colonized [on the order of 1 to
2 x 10° cells cm=2 (Wild et al., 2006)] by a diverse com-
munity of microbes (Hewson and Fuhrman, 2006; Pring-
ault et al., 2008; Rusch et al., 2009; Gaidos et al., 2011).
The microbial communities in reef sediments play an
important role in benthic-pelagic coupling through the
degradation of sloughed coral mucus and nitrogen cycling

(Gaidos et al., 2011). This mucus traps organic particles,
bacteria and picoplankton in the water column, and even-
tually settles on the sediments where up to 7% can be
degraded per hour (Wild etal, 2004b; Huettel et al.,
2006; Naumann et al., 2009; Mayer and Wild, 2010). At
Heron Island (Great Barrier Reef, Australia), researchers
found that the total production from benthic diatoms,
dinoflagellates and cyanobacteria in the sediments is of
the same order of magnitude as the production by corals
themselves (Werner et al., 2006), and that those sedi-
ments were both net calcifying and nitrogen fixing.

Asignificant amount of nitrogen is thought to be exported
from calcareous reef sediments to the rest of the ecosys-
tem through grazing and resuspension of benthic microal-
gae that readily take up N fixed in the sediments (Miyajima
et al., 2001). All benthic environments, such as sand, coral
rubble, live coral and cyanobacterial mats on coral reefs
that have been examined, were found to be active in
Nq-fixation (Larkum et al., 1988; Shashar et al., 1994; Cas-
areto et al., 2008; Charpy et al., 2010). For example, the
sandy bottom of a lagoon in the Red Sea provided 70% of
the nitrogen fixation to the surrounding fringing reef
(Shashar et al., 1994) and endolithic algae living in coral
rubble generated enough nitrogen to support up to 28% of
primary production on the reef at La Reunion Island in the
Indian Ocean (Casareto et al., 2008).

It has been shown that anthropogenic enrichment of
reef sediments, in this case from fish farms, can saturate
the ability of the microbial communities to metabolize
organic material, and shift the sediment environment to
one that is dominated entirely by anaerobic metabolism
(Holmer et al., 2003). The spatial resolution of microscale
niches within the sediments has rarely been examined,
and thus our mechanistic understanding of the coupling
between benthic and pelagic processes remains at a
larger, coarser scale than is needed for accurate predic-
tions of ecosystem responses to perturbation.

One example of a specific mechanism that allows inter-
action among water column, coral mucus and sediment
microbial communities is the process of mucus bundle
formation in response to sedimentation (Smriga, 2010).
When sediment is deposited on some coral species,
such as Montipora aequituberculata and Acropora
microphthalma, mucus is exuded that entrains the sedi-
ment and is released from the coral. These bundles then
behave as particles in the water column that can continue
to entrain other particles or plankton, be consumed by
detritivores, or sink onto the benthos (perhaps another
coral, an alga or sediment). This is just one example of the
tight coupling that can exist among the various reef
microscale habitats. The grazing and subsequent defeca-
tion patterns of mobile reef organisms (such as fish
and invertebrates) provide another such mechanism
(Johannes et al., 1972; Smriga et al., 2010).

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology
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In thinking about the various connections among the
microbial habitats discussed thus far, it is important to
consider the time component and the role sediments
might play as an archive of anthropogenic influence. For
instance, Cu and Zn contamination in reef sediments can
reach high levels from a single ship grounding (Negri
et al., 2002; Jones, 2007) such that small amounts of the
sediment are toxic to coral larvae and inhibit settlement
(Negri et al., 2002; Smith et al., 2003). The selection pres-
sure of these metals can shift sediment bacterial commu-
nity composition, and increase the incidence of antibiotic
resistance (Nogales et al., 2011). This metal signature
may persist in the sediments and/or the associated bac-
terial communities for many years to come with unex-
plored consequences for overall ecosystem function. This
is an example of why we need to understand the propa-
gation of sublethal perturbations through the ecosystem
to be able to predict the responses and resilience of coral
reefs to future change.

Towards a mechanistic and quantitative
understanding of reef microbial ecology

Given the strong coupling in coral reef ecosystems, it is
not possible to clearly separate benthic and pelagic pro-
cesses, and thus we need to understand the holobiont
within the continuum of benthic and pelagic environments.
In a similar context, each of these environments encom-
passes many different microscale niches that can change
the dynamics of benthic-pelagic interactions depending
on the physical processes and various types of external
forcing at play. In the pelagic environment, for example,
we know that organic matter aggregates such as marine
snow and phytoplankton are point sources of high con-
centrations of organic matter that vary on the millimetre
scale, and are profoundly important for the functioning of
ocean basin scale pelagic marine ecosystems (Azam,
1998; Seymour et al., 2000; Kiorboe and Jackson, 2001;
Long and Azam, 2001). Similarly, we can consider how
microscale architecture and its heterogeneous distribution
may regulate some mechanisms of microbial interactions.
Spatial heterogeneity within coral microbial communities
has been documented on the scale of centimetres
(Rohwer et al., 2001), but has rarely been investigated on
a smaller scale. For example, one potential mechanism to
consider is local organic matter enrichment within the
coral mucus layer by expelled zooxanthellae (Paul et al.,
1986; Jones and Yellowlees, 1997; Baghdasarian and
Muscatine, 2000; Wild et al., 2005; Garren and Azam,
2010), which could act as a hotspot for microbial growth,
as in the case of rapid and profuse colonization by Vibrio
cholerae of the marine dinoflagellate Lingulodinium poly-
edrum (Mueller et al., 2007). Heterogeneity in the micros-
cale physical architecture of the coral mucus layer may
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contribute to spatial variation in microbial interactions
such as bacteria-bacteria antagonism (Ritchie, 2006;
Rypien et al., 2010), nitrogen cycling (Beman et al., 2007;
Siboni et al., 2008; Olson et al., 2009), or pathogen sur-
vival (Looney et al., 2010).

A parallel continuum of size must be layered into our
understanding as organic matter, the fuel for heterotrophic
microbial processes, is considered within the spatial con-
tinuum of the reef environment. One of the next chal-
lenges for the field is to elucidate and quantify the
mechanistic connections among these microbial commu-
nities within this multidimensional, multi-scale framework
to attain a cause-and-effect understanding of how a reef
ecosystem functions. The technology is now available to
begin adding multiple spatial and time scale contexts to
fundamental questions of coral reef ecosystem function
such as how growth of associated microbial communities
is regulated, why we see certain dominances in a given
niche, what the primary sources of bacterial mortality are
under specific environmental conditions, and how all of
these mechanisms relate to the health or disease state of
a reef (see Fig. 3). For example, new developments in
confocal imaging technology have enabled the visualiza-
tion of the natural coral-microbial assemblage in situ, and
micro-scale ecological interactions can now be observed
in real time (M. Garren and F. Azam, submitted).

Concluding remarks

As we consider questions that are currently driving the
field of coral microbial ecology forward, it is an opportune
moment to reflect on the progress that has been made in
recent history. In 2003, Knowlton and Rohwer wrote an
article in The American Naturalist entitled ‘Multispecies
microbial mutualisms on coral reefs: the host as a habitat’
(Knowlton and Rohwer, 2003). They outlined the then
most current understanding of bacterial and archaeal
associations with corals, and concluded that ‘we know
almost nothing about the role of non-eukaryotic microbes
in healthy coral’ (p. S54). Among the research questions
that they suggested to drive the field forward were: (i)
What is the scope of diversity for coral-associated bacte-
ria and archaea, and how is it patterned in space and
time? (ii) Which of the many bacterial and archaeal asso-
ciates of corals are true mutualists, and what roles do they
play? (iii) How important are bacterial and archaeal com-
munities to the health of coral reefs, and are they being
disrupted by anthropogenic stress?

The field has made substantial progress on these
questions in the past 8 years, and yet there remains
much to be learned by revisiting these same questions
and taking advantage of significant advances in geno-
mics and imaging technologies. As discussed earlier

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology
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2. Magnitude and variability of biogeochemical fluxes,
and responses to perturbactions (e.g. pH, eutrophication, temperature)

1. Defining a “healthy coral reef ecosystem”
and its limits of resilience

10. Potential of rare phylotypes
to dominate new habitats

&

9. Transport
mechanisms for

microbial exchange
among microenvironments

8. Identifying early warning signs of
imminent decline or distrubance

Fig. 3. Important research problems in coral reef microbial ecology.

and recently reviewed by others (Bourne etfal., 2009;
Ainsworth et al.,, 2010; Mouchka et al., 2010), the scope
of diversity of bacteria is much clearer than it was before,
and we have more information about patterns of distribu-
tion and diversity through space and time. However, the
same cannot be said for the archaeal communities, and
there remain many levels of spatial and time scales on
which we do not understand bacterial behaviours.
Further, and critically, our understanding of in situ micro-
bial activity and interactions is still quite incomplete. It has
become clear that studying the tropical reef environment
requires some modifications of methods from traditional
temperate marine microbial ecology to accurately quan-
tify essential parameters (e.g. Torreton and Dufour,
1996a for FDDC conversion to specific growth rate, u;
Wild et al.,, 2006; Garren and Azam, 2010 for enumera-
tion of bacterial cells), and these breakthroughs are
helping to constrain and quantify critical pieces of the
puzzle such as bacterial abundance, growth rates, and
production rates (Table 1).

And thus, while the questions we highlight (Fig. 3)
address some of the current gaps in our understanding of
reef microbial ecology, many are questions that have

Health

Resilience

Anthropogenic
Influences

3. Ability of water or sediment environments to
buffer corals against environmental change

4. Roles of growth performance,
community composistion, and trophic
interactions/population regulation in
different microniches to ecosystem stability

5. Tipping points for transitions from rare
to abundant for certain phylotypes

6. Connection between spatial distribution
of organic matter in water and distribution
of coral-assocaiated microbiota

7. Propagation of sublethal perturbations

through the ecosystem

been asked previously. The reason to revisit them is that
new technologies (including NanoSIMS, super resolution
microscopy, high-speed imaging techniques, confocal
Raman microspectroscopy, next-generation sequencing,
and microfluidics) are becoming accessible to marine
microbial ecologists that can help answer the questions in
a quantitative and mechanistic way (Table 2). We further
stress the need to develop in situ microscopy. In this new
era of microbial ecology, some researchers are consider-
ing phage therapy as a potential response to global
increases in coral disease (Efrony et al., 2007; 2009) and
the ability to employ the rapidly advancing concepts and
techniques from biomedicine is ever more accessible
(Bourne et al., 2009). Studies of coral reef ecology and
microbial diseases of corals would also benefit by learning
from the highly dynamic field of human health consider-
ations of microbial pathogenesis and the ecology of
microbial diseases. Indeed, future discoveries in coral—
microbe interactions may ‘return the favours’ through
potential applicability to human—microbe interactions. The
time is ripe for microbial ecologists to discover and create
an integrated and mechanistic understanding of coral reef
functioning; however, they will need the help of natural

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology
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Table 2. Technologies now available to marine microbial ecologists that m/ay help in the investigation of some important research problems in coral reef microbial ecology (depicted in Fig. 3).

References to recent reviews are provided for further reading.

Potential applications to coral microbial
ecology problems depicted in Fig. 3

Recent reviews

Benefits

Technology

#2 (biogeochemical flux) Wagner (2009)

High spatial resolution (to 50 nm) and sensitivity (p.p.m.) for

NanoSIMS

#7 (sublethal perturbations)

elemental, isotopic and molecular composition of a surface

Haagensen et al. (2011)

6 (spatial distributions)

Capture images with a higher resolution that the diffraction limit

Super resolution microscopy

Haagensen et al. (2011)

#4 (growth rates and community composition)

#5 (tipping points)

New developments in traditional imaging techniques allow living

High speed imaging techniques (e.g.

samples to be imaged in real time

atomic force microscopy, laser scanning

confocal, etc.)

(spatial distributions)
#9 (transport and exchange)

#6

Petry et al. (2003); Wagner

#2 (biogeochemical flux)

Provides spatially explicit information on chemical bonds and

Confocal raman microspectroscopy

(2009)

#3 (buffering perturbations)
(spatial distributions)

#6

can be done on unfixed samples

#1 (defining healthy reef) Gilbert and Dupont (2011)

#8 (early warning signs)

Cost effective high throughput DNA, RNA and protein sequences

Next Generation sequencing

#10 (rare phylotype dynamics)

#4

Ahmed et al. (2010)

(growth rates and community composition)

#3 (buffering perturbations)

Ability to constrain microenvironments and test microbial

Microfluidics

responses

#10 (rare phylotype dynamics)

resource managers working in coral reef ecosystems. In
the context of long-term survival and conservation of coral
reef ecosystems, the need for this work is immediate.

There are powerful and logistically simple ways now
possible in which resource managers and microbial ecolo-
gists might collaborate to greatly advance our under-
standing of coral reef microbial ecology and microbial
pathogenesis. Most coral reef managers and researchers
lack access to specialized technologies in field settings
around the world. However, it could be straightforward to
collect samples during regular monitoring routines and
send them to specialize laboratories for analyses and
archiving. For instance, coral and environmental samples
for analyses of microbial abundance, community compo-
sition and gene expression can be preserved (even at
room temperature) and sent to specialized central labo-
ratories. Dramatic decrease in the cost and increase in
the speed of the -omic analyses makes practical such
previously prohibitive approaches as metagenomic and
metatranscriptomics to monitoring and research. We envi-
sion a limited number of centres that analyse and archive
the samples, by methods that are inter-calibrated among
the centres. Importantly, this will enable the scientific com-
munity to obtain geographically broad and long time
series, critical for understanding the effects of climate
change on the health of coral reefs. It would be most
valuable to create an organized and well-documented
archive of samples from around the globe accessible to
coral reef researcher worldwide. The emerging data asso-
ciated with the samples should also be made freely
accessible. Interrogation of such archived samples would
further deepen our knowledge of corals and their environ-
ments by technologies currently not envisioned and for
testing hypotheses not yet formulated.
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