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Abstract
Expressed sequence tag (EST) sequencing projects are underway for numerous organisms, generating millions of
short, single-pass nucleotide sequence reads, accumulating in EST databases. Extensive computational strategies
have been developed to organize and analyse both small- and large-scale EST data for gene discovery, transcript and
single nucleotide polymorphism analysis as well as functional annotation of putative gene products.
We provide an overview of the significance of ESTs in the genomic era, their properties and the applications of ESTs.
Methods adopted for each step of ESTanalysis by various research groups have been compared. Challenges that lie
ahead in organizing and analysing the ever increasing EST data have also been identified.
The most appropriate software tools for EST pre-processing, clustering and assembly, database matching and
functional annotation have been compiled (available online from http://biolinfo.org/EST). We propose a road map
for EST analysis to accelerate the effective analyses of EST data sets. An investigation of EST analysis platforms
reveals that they all terminate prior to downstream functional annotation including gene ontologies, motif/pattern
analysis and pathway mapping.

Keywords: expressed sequence tags; sequence assembly and clustering; database similarity searches; functional annotation;
conceptual translation; transcriptome analysis

INTRODUCTION
To understand the behaviour of complex biological

organization and processes in terms of their molec-

ular constituents [1], we must not only identify,

catalogue and assign the function of all of its genes

and gene products, but also understand regulatory

interconnections between DNA, RNA and proteins.

Following on from significant advancement in high-

throughput technologies (microarrays, automated

sequencing and mass spectrometry), transcriptomics,

the global study of transcription, together with

genomics and proteomics, have undoubtedly con-

tributed to a systems biology approach. These

technologies have generated a deluge of data.

Fortunately, efficient computational tools (intelligent

data networks, query, retrieval, analysis and

visualization tools) have now optimized data

mining, accelerating the process of discovery.

Expressed sequence tag (EST) and complemen-

tary DNA (cDNA) sequences provide direct evi-

dence for all the sampled transcripts and they are

currently the most important resources for transcript-

ome exploration. ESTs are short (200–800

nucleotide bases in length), unedited, randomly

selected single-pass sequence reads derived from

cDNA libraries. High-throughput ESTs can be

generated at a reasonably low cost from either the

50 or 30 end of a cDNA clone to get an insight into

transcriptionally active regions in any organism. In

1991, ESTs were used as a primary resource for

human gene discovery [2]. Thereafter, there has been

an exponential growth in the generation and
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accumulation of EST data in public databases for

myriad organisms. At present, ESTs enable gene

discovery, complement genome annotation, aid

gene structure identification, establish the viability

of alternative transcripts, guide single nucleotide

polymorphism (SNP) characterization and facilitate

proteome analysis [3–5].

Whole genome sequencing is currently imprac-

tical and expensive for organisms with large genome

sizes. Such an approach is unlikely to be applied

extensively, irrespective of the significance of such

genome data in human and animal health, agricul-

ture, ecology and evolution. In addition, genome

expansion, as a result of retrotransposon repeats,

makes whole genome sequencing less attractive for

plants such as maize [6]. In this scenario, EST data

sets have been utilized to complement genome

sequencing or as an alternative to the genome

sequencing of many organisms, earning the label, the

‘poor man’s genome’ [5]. It must be noted

that ESTs are subject to sampling bias resulting in

under-representation of rare transcripts, often

accounting for only 60% of an organism’s

genes [7]. However, ESTs in combination with

reduced representation sequencing strategies, such as

methylation filtration and high Cot selection, have
enabled the successful examination of the gene pool

in plants like maize [8].

There are several steps in EST analysis and an

overwhelming number of tools available for each

step. These methods have different strengths and

attempt to extract biological information system-

atically from ESTs, in spite of their error-prone

nature. However, there exists confusion in choosing

the right tool for each different step of EST analysis

and the subsequent downstream annotation at DNA

or protein level. The confusion is compounded by

the ability of some tools to handle high-throughput

EST data, while others cannot.

This review briefly describes how ESTs are

generated, to get an idea of the possible sources of

error in the sequences obtained; where they are

deposited (EST data resources) and the bottlenecks in

EST analysis. We also list their proven utility in

different application areas, the general methods and

protocols being followed by different groups for

EST analysis and our own shortcut through the EST

analysis maze. Wherever possible the most useful and

extensively used proven resources are identified.

Individual tools and pipelines for EST analysis

are compared and a detailed list of available web

resources pertaining to EST analysis is maintained at

http://biolinfo.org/EST/ [9].

ESTGENERATION
Messenger RNA (mRNA) sequences in the cell

represent copies from expressed genes. As RNA

cannot be cloned directly, they are reverse tran-

scribed to double-stranded cDNA using a specialized

enzyme, the reverse transcriptase. The resultant

cDNA is cloned to make libraries representing a set

of transcribed genes of the original cell, tissue or

organism. Subsequently, these cDNA clones are

sequenced randomly from both the directions in a

single-pass run with no validation or full-length

sequencing to obtain 50 and 30 ESTs. These ESTs

usually range in size from 100–800 bp. The resultant

set of ESTs is redundant, as the cDNA template used

can be of partial or full length. Bonaldo et al. [7]
provide a detailed description of cDNA library

construction and normalization applied to remove

redundancies.

Simpson and co-workers [10] have developed

a novel cost-effective method for generating high-

throughput ESTs called ORESTES (open reading

frame expressed sequence tags). This method differs

from conventional EST generation by providing

sequence data from the central protein coding region,

and thus the most informative and desired portion,

of transcripts. ORESTES representing highly,

moderately and rarely expressed transcripts have

been derived from several species with more than a

million human sequences and thousands from other

species such as cow and honey bee deposited in the

Expressed Sequence Tags database, dbEST [11–13].

ERRORSASSOCIATEDWITH
ESTGENERATION
A typical EST sequence (Figure 1A) is only a very

short copy of the mRNA itself and is highly error

prone, especially at the ends. The overall sequence

quality is usually significantly better in the middle

(Figure 1B). Vector and repeat sequences either in

the end or rarely in the middle are excised during

EST pre-processing.

As ESTs are sequenced only once, they are

susceptible to errors. Generally, the quality of base

reads in individual EST sequences is initially poor

(upto 20% or �50–100 bp), gradually improves and

then diminishes once again towards the end [14].

In silico ESTanalysis 7
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The overall sequence quality is usually significantly

better in the middle (‘highly informative length,’

Figure 1B). Phred scores [15] provide a measure of

sequence quality with higher values corresponding to

better sequence quality. Phred examines the peaks

around each base call to assign a quality score to each

base call that are logarithmically linked to error

probabilities. Quality scores range from 4 to 40 and

are estimated as

q ¼ �10� log10ðPÞ

where q is the Phred quality score and P is the

estimated error probability of that call. A Phred score

of 20 represents 1/100 chance of being incorrect or

99% accurate base calling while q¼ 30 denotes

1/1000 chance of being incorrect or 99.9% base

calling accuracy. Phred scores can therefore be used

to extract either entire sequences or segments of

specified quality, based on the biological question

being addressed in subsequent analysis.

Redundancy, under-representation and over-

representation of selected host transcripts are

inherent problems with EST data due to the variable

protocols used in their generation. Sequencing

artefacts, such as base-calling errors as high as

5% [14], base stuttering (repeated bases, specifically

G and T) and low quality sequences are some of the

frequently observed errors in ESTs. There can be

possible contaminations from vector, linker, adaptor

and chimeric sequences, as also from genomic

DNA fragments. In addition, low quality sequence

attributes, repeats (simple or tandem), short sequence

length and annotation errors can pose problems

during downstream analysis. Moreover, natural

sequence variations, such as RNA editing and

genomic variations, due to SNPs will bring about

additional challenges as it is not trivial to distinguish

between sequencing artefacts and naturally-

occurring substitutions, and insertion/deletion of

events in a given EST data set.

ESTs and untranslated regions (UTRs)
The 50 and 30 UTRs of eukaryotic mRNA have

been experimentally shown to contain sequence

elements essential for gene regulation, expression and

translation [16]. In this context, EST data has proven

to be important for mining UTRs as both 50 and 30

ESTs contain significant sections of the UTRs

along with protein coding regions. The CORG

(A) Characteristics of an EST sequence

(B) EST sequence quality
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Figure 1: Characteristics of ESTsequences.A. An ESTsequence usually starts and ends with vector-contaminated
bases, interspersedwith possible repeats or low-complexity regions.B. Phred quality scores are plotted as a function
of sequence length for a hypothetical ESTsequence shown in A.
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(COmparative Regulatory Genomics) resource [17]

supports promoter analysis using assembled ESTs,

while more than half of the Eukaryotic Promoter

Database [18] entries are based on 50 EST sequences.

Mach [19] has developed the PRESTA (PRomoter

EST Association) algorithm for promoter verification

and identification of the first exon, by mapping

EST 50 ends.

Polyadenylation or poly(A) tails found in 30 UTR

of the majority of mRNA transcripts are implicated

in mRNA metabolism [16]. Gene boundaries have

been predicted using poly(A) sites from 30 EST

clusters [20]. Differential poly(A) produces mRNAs

with specific properties, attributable to post-tran-

scriptional regulation mechanisms. Computational

analyses of alternative poly(A) [21–23] have

advanced our understanding of mRNA regulation.

Gautheret et al. [22] identified previously unreported

poly(A) sites in human mRNAs. Yan and Marr [23]

used 30 ESTs with poly(A) tails and demonstrated

that at least 49% of human) 31% of mouse and

28% of rat polyadenylated transcription units show

alternative poly(A) sites resulting in new protein

isoforms. The presence of poly(A) tails in ESTs can

also be used to distinguish untranslated mRNAs from

productive transcripts, leading to protein isoforms.

EST DATARESOURCES
The largest, freely-available repository of EST data

(32 889 225 ESTs from 559 different organisms; as on

Feb 2006) is dbEST [24, 25]. UniGene [25] from the

National Center for Biotechnology Information, USA

(NCBI) stores unique genes and represents a non-

redundant set of gene-oriented clusters generated from

ESTs. Other specialized EST resources created for

specific organisms include the The Institute for

Genome Research, USA (TIGR) Gene Indices [26],

the Rat EST project (University of Iowa) and the

Cancer Genome Anatomy Project. Table 1 alphabe-

tically lists key EST resources. These resources and

EST analysis programs, discussed in subsequent

sections, have been categorized as F (free for academic

users), D (data available for download), C (commercial

package) and W (web interface available).

OVERVIEWOF EST SEQUENCE
ANALYSIS
An individual raw EST has negligible biological

information. Analysis using different combinations of

computational tools augments this weak signal

and when a multitude of ESTs are analysed, the

results enable the reconstruction of transcriptome

of that organism. While diverse research groups

have used different combinations of tools for

extraction of data from specific databases followed

by analyses [32–37], a generic protocol of the

different steps in the analysis of EST data sets is

shown in Figure 2.

Chromatograms or EST sequences extracted from

databases are pre-processed (Step 1, Figure 2) into

high-quality ESTs wherein they are screened for

sequence repeats, contaminants and low-complexity

sequences, which are eliminated. Subsequently,

high-quality ESTs are grouped into ‘clusters’

(Step 2, Figure 2) based on sequence similarity.

The maximum informative consensus sequence is

generated by ‘assembling’ these clusters, each of

which could represent a putative gene. This step

serves to elongate the sequence length by culling

information from several short EST sequences

simultaneously. Database similarity searches are

subsequently performed against relevant DNA

databases (Step 3, Figure 2) and possible functionality

is assigned for each query sequence if significant

database matches are found. Additionally, a con-

sensus sequence can be conceptually translated to a

putative peptide (step 4, Figure 2) and then

compared with protein sequence databases (step 5,

Figure 2). Protein centric functional annotation,

including domain and motif analysis, can be carried

out using protein analysis tools. It must be noted that

the entire transcriptome is not translatable into

protein products.

Each of these steps is briefly described subse-

quently, with special emphasis on the software tools

available, followed by EST analyses tools for specific

applications such as open reading frame (ORF)

prediction, gene finding and detection of SNPs and

alternative splicing.

ESTpre-processing
Pre-processing reduces the overall noise in EST data

to improve the efficacy of subsequent analyses.

Vector contamination is prevalent in ESTs, and

often a part of the vector is also sequenced along

with the EST sequences (Figure 2). These vector

fragments have to be clipped before ESTs are

clustered. Comparing the ESTs with non-redundant

vector databases, such as UniVec and EMVEC with

In silico ESTanalysis 9



Table 1: Resources for EST data

Resource# Web site
Contents of
ESTresource Organisms Category*

ApiEST-DB [27] http://www.cbil.upenn.edu/apidots/ Raw Apicomplexan parasites F, D
dbESTat NCBI [24] http://www.ncbi.nlm.nih.gov/dbEST/ Raw All F, D
Diatom EST database [28] http://avesthagen.sznbowler.com. Raw and clusters Diatoms F, D
ESTree [29] http://www.itb.cnr.it/estree/ Raw and clusters Peach F, D
Fungal genomics project https://fungalgenomics.concordia.ca/home/index.php Raw Fungal F, D
Honey bee brain EST project [30] http://titan.biotec.uiuc.edu/bee/honeybee_project.htm Raw and clusters Honey Bee F, D
Nematode ESTs at the Sanger Institute ftp://ftp.sanger.ac.uk/pub/pathogens/nem_ests/ Raw and clusters Parasitic nematodes F, D
NEMBASE- parasitic nematode ESTs http://www.nematodes.org Raw and clusters Parasitic nematodes F, D
Parasitic and free-living nematode ESTresource http://www.nematode.net/ Raw and clusters Nematodes F, D
Phytopathogenic Fungi and Oomycete EST database http://cbr-rbc.nrc-cnrc.gc.ca/services/cogeme/ Plant pathogenic fungi ESTs Fungi and oomycetes F, D
Plant Gene Research, Kazusa DNA Research Institute http://www.kazusa.or.jp/en/plant/database.html Raw Heterogeneous set F, D
Plant Genome database [31] http://www.plantgdb.org/ Raw and clusters Plants F, D
Rat EST data at University of Iowa http://ratest.eng.uiowa.edu Raw Rat F, D
Sanger Institute Xenopus tropicalis EST project http://www.sanger.ac.uk/Projects/X_tropicalis/ Raw and clusters Xenopus F, D
TheTIGRGene Indices [26] http://www.tigr.org/tdb/tgi/ Raw and gene indices All F, D
UniGene database at NCBI www.ncbi.nlm.nih.gov/UniGene Raw and clusters All F, D

#Very useful resources are shown in bold.
*F, free for academic users; D, data available for download.
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the locally installed tools such as BLAST [38] or

Cross_Match (Smith and Green, unpublished work

[39]), can identify vector contamination for removal.

Any low complexity regions in EST data can be

detected and masked using DUST from NCBI or

nseg [40]. Repetitive elements, such as LINEs (Long

interspersed elements), SINEs (Short interspersed

elements), LTRs (Long terminal repeat) and SSRs

(Short simple repeats), can lead to erroneous

assembly of sequences. Therefore, they should be

‘repeat masked’ during the analysis using either

RepeatMasker [39] or MaskerAid [41] to screen

DNA sequences for low complexity DNA sequences

and interspersed repeats.

Poly(A) is not encoded in the genomic sequence

and should be trimmed to retain a few adenines

(usually 6–10) to get high-quality ESTs for clustering

and assembly process. A list of web resources related

to EST pre-processing is given in Table 2, grouped

according to their functionality.

EST sequences from
chromatograms and

databases

1. EST pre-processing
    Vector clipping
    Masking low complexity
    Repeat masking

Low quality,
singleton,
very short ESTs

High-quality ESTs

Consensus EST
sequences

Putative peptide

2. EST clustering and
assembly

4. Conceptual
translation

Functional annotations

Output visualization
and interpretation

of the results

3. Nucleotide database similarity
    searches

Significant
match

No

Yes

5. Protein database
similarity searches

Discard

Novel sequences
(function unknown)

Figure 2: Generic steps involved in ESTanalysis. 1. Raw ESTsequences are checked for vector contamination, low
complexity and repeat regions, which are excised ormasked. Low quality, singleton and very short sequences are also
removed. 2. ESTs are then clustered and assembled to generate consensus sequences (‘putative transcripts’). 3. DNA
database similarity searches are carried out to assign, identify homologues and sign possible function. 4. Putative
peptides are obtained by conceptual translation of consensus sequences. 5. Protein database similarity searches are
performed to assign putative function(s). The analysis is extended to functional annotation followed by visualization
and interpretation of results. The steps enclosed by the grey box alone are implemented in the currently available
pipelines.
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Table 2: Resources for EST pre-processing

Name# Website Description Category*

UniVec http://www.ncbi.nlm.nih.gov/VecScreen/UniVec.html Vector database F
EMVec http://www.ebi.ac.uk/blastall/vectors.html Vector database F
Phred/Cross_Match http://www.phrap.org/ Base caller/vector trimming and removal F
Trimest http://emboss.sourceforge.net/apps/#Apps Poly(A) tail trimmed F
Trimseq http://emboss.sourceforge.net/apps/#Apps Ambiguous ends trimmed F
VecScreen http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html Vector, linker and adapter identification F
Vector cleaning http://www.aborygen.com/products/biOpen/tools-for-biOpen/vector-cleaning.php Vector cleaning C
Vectorstrip http://emboss.sourceforge.net/apps/#Apps DNA between vector sequences extracted F
Paracel http://www.paracel.com/ EST pre-processing package C,W
Lucy2 [42] http://www.complex.iastate.edu/download/Lucy2/index.html Sequence trimming and visualization F
Dust ftp://ftp.ncbi.nih.gov/blast/ Low-complexity regions masked F
TheTIGR Plant Repeat databases http://www.tigr.org/tdb/e2k1/plant.repeats/ Plant repeats database F
MaskerAid [41] http://blast.wustl.edu/maskeraid/ Repeats masked F
RepeatMasker http://www.repeatmasker.org/ Repeats masked F

#Very useful resources are shown in bold.
*F, free for academic users; C, commercial package;W, web interface available.
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ESTclustering and assembly
The purpose of EST clustering is to collect over-

lapping ESTs from the same transcript of a single

gene into a unique cluster to reduce redundancy.

An EST cluster is a fragmented data, which can be

consolidated and indexed using gene sequence

information, such that all the expressed data arising

from a single gene is grouped into a single index

class, and each index class contains information for

only that particular gene [43]. A simple way to

cluster ESTs is by measuring the pair-wise sequence

similarity between them. Then, these distances are

converted into binary values, depending on whether

there is a significant match or not, such that the

sequence pair can be accepted or rejected from the

cluster being assembled. Different steps for EST

clustering are described in detail by Ptitsyn and

Hide [44]. In their formalism, there are two

approaches for EST clustering, ‘stringent’ and

‘loose.’ The stringent clustering method is conserva-

tive, uses single-pass grouping of ESTs resulting in

relatively accurate clusters, but generates shorter-

sequence consensuses with low coverage of

expressed genes. In contrast, loose clustering is

‘liberal’ and repeats low quality EST sequence

alignments many times to generate less accurate but

longer-sequence consensuses. Consequently, there is

a better coverage of expressed gene data and

alternatively spliced transcripts, but there is a risk of

including paralogues in the clusters. stackPACK [36]

is designed to use loose clustering, while TIGR

Gene Indices [26] adopt stringent clustering.

UniGene clusters lie between the two extremes.

Phrap [45] and CAP3 [46] are among the most

extensively used programs for sequence clustering

and assembly. Quackenbush and co-workers [47]

have compared Phrap, CAP3 and TIGR Assembler

programs with a benchmarking data set of 1 18 000

rat ESTs. They assessed the effects of sequencing

errors on EST assembly and critically evaluated the

tools for EST clustering, assembly and relative

accuracy of algorithms. Their results demonstrate

that CAP3 consistently out-performed other similar

programs, producing high-fidelity consensus

sequences and maintaining a high level of sensitivity

to gene family members while effectively handling

sequencing errors. A newer study by Wang et al. [48]
have recognized two types of errors accruing from

CAP3 EST clustering, where ESTs from the same

gene do not form a cluster (Type I) and ESTs from

distinct genes are wrongly clustered together

(Type II). They propose a novel statistical approach

for more accurate estimates of the true gene cluster

profile.

Table 3 provides a list of resources available for

EST clustering, assembly and consensus generation.

The STACK (Sequence Tag Alignment and

Consensus Knowledge Base) [36] system was created

to cluster and assemble ESTs. The major difference

between STACK and other resources lies in its initial

tissue-specific classification (15 tissue-based cate-

gories and one disease category) of EST data, for

differential expression analysis. STACK uses a loose,

unsupervised clustering strategy to group pre-

processed ESTs for a wider gene coverage. The

d2_cluster (a non-pairwise alignment algorithm)

[43], Phrap and CRAW programs are incorporated

into STACK to cluster, assemble and analyse EST

alignments, respectively. Consensus contigs are then

merged based on clone-identification data to obtain

the best putative gene representation.

Table 3: Programs for ESTsequence assembly and consensus generation

Name# Website Category*

CAP3 [46] http://genome.cs.mtu.edu/cap/cap3.html F,W
CLOBB [49] http://zeldia.cap.ed.ac.uk/CLOBB/ F
CLU [44] http://compbio.pbrc.edu/pti F
ESTate http://www.ebi.ac.uk/�guy/estate/ F
ESTs aSSEmbly using Malig http://alggen.lsi.upc.es/recerca/essem/frame-essem.html F
megaBLAST ftp://ftp.ncbi.nih.gov/blast/ F,W
miraEST [50] http://www.chevreux.org/projects_mira.html F
Paracel Transcript Assembler http://www.paracel.com/ C,W
Phrap [45] http://www.phrap.org/ F
stackPACK [36] http://www.sanbi.ac.za/Dbases.html#stackpack F
Xsact and Xtract [51] http://www.ii.uib.no/�ketil/bioinformatics/ F

#Very useful resources are shown in bold.
*F, free for academic users; C, commercial package;W, web interface available.
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Database similarity searches
Once consensus sequences (putative genes) are

obtained from assembled ESTs, possible functions

can be assigned through downstream annotation,

achieved via database similarity searches, employing

familiar freely available tools and databases.

Different flavours of BLAST [38] programs from

NCBI serve as a universal tools for database similarity

searches. BLASTN can be used to search ESTs

against nucleotide sequence database and BLASTX

to search against protein databases. BLASTX trans-

lates a consensus EST sequence (query) into protein

products in six reading frames followed by compar-

isons with protein databases. In addition, one can

scan for protein domains by selecting the (CDD)

Conserved Domain Database [52] and the COG

(Cluster of Orthologous Groups) [53] database using

RPS-BLAST (Reverse PSI-BLAST) [52]. High-

throughput EST analysis and annotation involve

the generation and interpretation of thousands of

BLAST output results. In such cases, BLAST parsers

such as MuSeqBox can be used [54]. Another option

is to use SSAHA (Sequence Search and Alignment

by Hashing Algorithm) [55], a fast and efficient

DNA database searching tool. For transcriptome

analysis, ESTs are additionally aligned to the genome

sequence of the organism itself (if available) or the

closest relative, using specialized alignment programs

(Table 4) to facilitate genomic mapping and gene

discovery. BLAT, GMAP and MGALIGN are con-

sidered to be reliable methods for this process [56].

Conceptual translation of ESTs
EST data can be correlated with protein-centric

annotations by accurate and robust polypeptide

translations, since polypeptides are better templates

for identifying domains and motifs, to study protein

localization and to assign gene ontologies (GOs).

The first step in translating EST sequences is in

identifying the protein-coding regions or ORFs,

from consensus EST sequences, to enhance the

process of gene discovery and gene boundary

predictions. Some tools have been explicitly created

for this purpose. For example, OrfPredictor [61] has

been designed specifically to identify protein-coding

regions in EST-derived sequences, wherein the

program provides six frames of translation and

predicts most probable coding regions in all frames.

ESTScan [62] and DECODER [63] can detect and

extract coding regions from low-quality ESTs or

partial cDNAs while correcting for frame shift errors,

and provide conceptual translations. Table 5 lists key

programs related to protein-coding region predic-

tions from EST data. One can also use Prot4EST

[64], a pipeline with six tier polypeptide prediction

tool, to translate ESTs into polypeptides. Prot4EST

effectively incorporates DECODER, ESTScan and

BLASTX for more accurate predictions. The

putative peptides obtained can be compared with

protein databases using BLASTP from the BLAST

suite of programs.

FUNCTIONALANNOTATIONS
Once a putative polypeptide is obtained, its function

can be predicted by matching against non-redundant

protein sequence, motif and family databases using an

integrated tool such as Interproscan [66]. Protein

sequences are better templates for functional annota-

tion, particularly for the construction of multiple

sequence alignments, profile and HMM generation,

phylogenetic analysis, creation of protein-mass

fingerprint libraries for proteomics applications, and

domain and motif analysis using Pfam [67] and

SMART [68].

Table 4: Programs for EST/cDNA sequence to genomeDNA alignment

Name# Website Category*

BLAT [57] http://genome.ucsc.edu/cgi-bin/hgBlat F,W
est2genome [58] http://bioweb.pasteur.fr/seqanal/interfaces/est2genome.html F,W
GMAP [56] http://www.gene.com/share/gmap/ F
MGAlign [59] http://origin.bic.nus.edu.sg/mgalign F,W
SSAHA [55] http://www.sanger.ac.uk/Software/analysis/SSAHA/ F
Sim4 [60] http://globin.cse.psu.edu/html/docs/sim4.html F
Splign http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi F,W

#Very useful resources are shown in bold.
*F, free for academic users;W, web interface available.
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ESTANALYSIS PIPELINES
In any large-scale sequencing project, in which

thousands of ESTs are generated daily, it is extremely

important to be able to store, organize and annotate

using an automated analysis pipeline. Here, a

protocol is required to transfer data efficiently

between programs without human intervention,

based on carefully parameterized threshold criteria.

Given the ESTs from a database or from raw

sequence chromatograms, such a pipeline would

automatically clean, cluster, assemble, generate

consensus sequences, conceptually translate and

assign putative function based on various DNA and

protein similarity searches. Table 6 summarizes the

salient features of some of the EST analysis pipelines

[32–37], which comprise Steps 1–5 of Figure 2.

The TIGR Gene Indices are a rich resource for

the freely-available high-quality gene contigs derived

from their in-house EST analysis pipeline, TGCIL

(TGI Clustering tools) [71]. A high stringency

approach to establish sequence similarities during

the initial clustering process is employed, that groups

closely related genes into distinct consensus

sequences. This process also allows the identification

and separation of splice variants and then assembles

individual clusters to generate longer, virtual tran-

scripts or tentative consensus (TC) sequences, often

referenced to mRNA or genomic sequences [72].

TCs are then annotated with tools for ORF and

SNP prediction, long oligonucleotide prediction

for microarrays, putative annotation using a con-

trolled vocabulary, GO and enzyme commission

number assignments, and mapping to complete

or draft genomes and available genetic maps.

Presently, TCs have been generated for 77 species

and populate resources including EGO and

RESOURCERER [26].

Two other successful and widely accessed EST

‘warehouses’ with high-quality data are Unigene

and ENSEMBL. We have briefly described the data

and software used by these warehouses, since an

appreciation of these systems, if it were developed,

will form the basis of future EST analysis pipelines.

Unigene uses GenBank mRNA and coding

sequence data as ‘reference’ or ‘seed’ sequences for

supervised cluster generation. Sequence alignment

programs identify contaminant (linker, vector,

bacterial, mitochondrial and ribosomal) sequences.

Repeat and low-complexity regions are suppressed

by RepeatMasker and DUST, respectively. ESTs are

compared pairwise, using megaBLAST [38] with

different stringency levels, and then grouped into

clusters. UniGene stores all gene isoforms in a single

cluster, but does not generate consensus sequences.

Singletons, not belonging to any cluster, are

reprocessed at lower stringency and stored separately.

With EST data accumulating daily in GenBank,

UniGene clusters are updated each week for

progressive data management [25].

EST-based gene model validation forms one of

the core components of the ENSEMBL automatic

gene annotation system [73]. The ENSEMBL EST

gene build process involves two steps. In the first

step, EXONERATE [74] or BLAT is employed for

the pairwise alignment of ESTs and unspliced

genomic alignments, respectively. Clusters resulting

from these alignments are then submitted to the

ClusterMerge program [74] which derives a minimal

set of non-redundant transcripts compatible with the

splicing structure of a set of ESTs. Mapping these

clusters onto a genome leads to ‘putative genes’

called ‘ESTgenes’ [73, 74].

APPLICATIONSOF ESTS
ESTs are versatile and have multiple applications.

ESTs were first used to construct maps of the human

genome [75], followed by assessment of the gene

Table 5: ORF prediction and conceptual translation for ESTs

Name# Website Category*

DECODER [63] http://www.gsc.riken.go.jp/ F
DIANA-EST [65] artemis@pcbi.upenn.edu.(upon request from the author) F
Diogenes http://analysis.ccgb.umn.edu/diogenes/index.html F
ESTScan2 [62] http://www.ch.embnet.org/software/ESTScan2.html F,W
OrfPredictor [61] https://fungalgenome.concordia.ca/tools/OrfPredictor.html F,W
TargetIdentifier https://fungalgenome.concordia.ca/tools/TargetIdentifier.html F

#Very useful resources are shown in bold.
*F, free for academic users;W, web interface available.
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coverage from EST sequencing alone [14] and

mapping of gene-based site markers [25]. With the

exponential rise in genomic data from global

sequencing projects, EST databases are used for

gene structure prediction [20, 76], to investigate

alternative splicing [77–80], to discriminate between

genes exhibiting tissue or disease-specific expression

[81] and for the discovery and characterization of

candidate SNPs [82–84].

EST-based gene expression protocols have been

used in the identification and analysis of coexpressed

genes on a large scale [85, 86]. Ewing et al. [85] have
generated digital gene expression profiles of the rice

genome from dbEST classified tissue types and organs.

The in silico differential display technique allows the

identification of genes which are expressed differen-

tially in various tissues [87] and between normal

and diseased individuals [81]. Recently, applying

DNA ‘bar coding’ in EST projects, Qiu et al. [88]
categorized maize cDNA libraries using distinct 6-bp

DNA sequences to track the origin of ESTs from

specific mRNA pools. ESTs have also become

invaluable resources in the area of proteomics for

peptide identification and proteome characterization

of proteomes, particularly in the absence of complete

genome sequence information [89, 90]. EST

sequencing strategies together with other genomic

and proteomics methodologies (transcription profil-

ing and peptide fingerprinting) have been employed

for gene and allele identification [91, 92]. Overall, the

usefulness of EST data has extended well beyond its

original application in gene finding and in transcript-

ome analysis, and a comprehensive list of specialized

EST application software is provided in Table 7.

AROADMAP FOR ESTANALYSIS
In order to make sense of the bewildering array of

tools available for somany different EST analysis steps,

we present a simplified solution as a roadmap, with a

small set of selected options for each step. Specific

resources have been selected for each step during the

analysis, based on their usefulness and performance

evaluation with heterogeneous EST data sets. Some

of the most reliable tools, such as CAP3 or Phrap,

have already been used as base algorithms to either

develop more advanced methods for the analysis of

ESTs or as a part of EST analysis pipelines (Table 6).

The resources selected for the roadmap can be freely

downloaded (by the academic community), installed

and run locally for high-throughput EST analysis.

Also, these programs have been demonstrated to be

consistent independently, or efficient as a part of

different EST analysis pipelines and we wish to

recommend these as a general ‘Modus operandi’ for
small or large-scale EST analysis projects.

For EST pre-processing, the Univec database with

Cross_Match [39] can effectively identify and elim-

inate vector sequences. RepeatMasker or MaskerAid

[41] (for large-scale EST analysis) can mask repeat

sequences. CAP3 [46] or Phrap [45] can cluster,

assemble and generate consensus contigs from pre-

processed EST fragments and ESTscan2 [62] will then

detect coding regions in consensus contigs. In

addition, GOs can be linked to consensus contigs

to assign a possible function using Blast2GO [99].

For specific analysis, a brief selection is considered.

miraEST [50] can be used for the detection and

classification of SNPs, by reconstructing mRNA

transcripts from ESTs. Prot4EST [64] outputs

peptide sequences for protein-centric downstream

annotations.

We have checked this roadmap on a test data set of

20 000 ESTs from a plant parasitic nematode,

Meloidogyne incognita (S.H.N., R.B.G. and S.R.,

unpublished results). We pre-processed the raw

ESTs using a combination of UniVec database and

Cross_Match program to remove vectors, followed

by masking of repeats with RepeatMasker. We then

used Phrap and CAP3 to cluster, assemble and

generate consensus contigs, and found high similarity

in the quality and number of contigs generated by the

two programs. BLASTX (to search for similar

sequences in various relevant databases) and

Blast2GO (to assign GOs) were then applied for

functional annotation of the EST contigs. Partigene

[35], ESTAP [33] and ESTAnnotator [32] are

integrated sequence analysis suites which we consider

to be useful for high-throughput EST analysis and

annotation. ESTs also have a multitude of specialized

applications, listed in Table 7. Describing all of them is

beyond the scope of this review.

CONCLUSIONS
The International Nucleotide Sequence Database

Collaboration recently reached a milestone with

100 000 000 000 bases (100 Gigabases) of the genetic

code, representing individual genes and partial and

complete genomes of more than 165 000 organisms,

most of which are represented by EST data sets.

A cornucopia of ESTs will continue to be generated
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Table 6: Characteristics of EST pipelines

Name# Website
Pre-processing
programs

Clustering and
assembly programs

Translation
programs Category*

Edinburgh EST-Pipeline [35] http://zeldia.cap.ed.ac.uk/ PartiGene/index.html Phred; Cross_Match CLOBB; Phrap DECODER; ESTSCAN F
ESTAnalysis Pipeline (ESTAP) [33] http://staff.vbi.vt.edu/estap/ Phred; Cross_Match D2_cluster; CAP3 BLASTX F
ESTAnnotator [32] http://genome. dkfz-heidelberg.de/menu/

biounit/dev.shtml#estannotator
Phred; RepMask with
UniVec data

CAP3 BLASTX W

ESTIMA [34] http://titan.biotec.uiuc.edu/ ESTIMA/ Information not available BlastClust; CAP3 BLASTX F
ESTweb [37] http://bioinfo.iq.usp.br/estweb/ Phred; Cross_Match None None F
Nematode.net [69] http://nematode.net/ Phred; Consed Phrap BLASTX F
NemaGene
Clusters
PipeOnline[70] http://bioinfo.okstate.edu/pipeonline/ Phred; Cross_Match Phrap BLASTX F
TheTIGRGene Indices [26] (TGICL) http://www.tigr.org/tdb/tgi/ SeqClean; megaBLAST CAP3; Paracel

TranscriptAssembler�
DIANA-EST; ESTscan; Framefinder F (except paracel)

#Very useful resources are shown in bold.
*F, free for academic users;W, web interface available.

Table 7: EST applications and visualization resources

Name Web site Description Application area Category

ESTgene [74] http://www.ebi.ac.uk/�guy/estate/ Alternative splicing detection Alternative splicing F
galaxieEST [93] http://galaxie.cgb.ki.se/galaxieEST.html Automated phylogenetic analysis Evolutionary studies F
GBA server [94] http://gba.cbi.pku.edu.cn:8080/gba/ EST-based digital gene expression profiling Gene expression profiles F
ESTminer [91] http://www.soybase.org/publication_data/Nelson/

ESTminer/ESTminer.html
Gene and allele identification Gene structure prediction and

alternative splicing
F

ESTminer [95] ftp://cggc.agtec.uga.edu/estMiner/ Web application and database schema
for mining of EST clusters

Candidate gene discovery F

GeneSeqer [96] http://bioinformatics.iastate.edu/cgi-bin/gs.cgi Alternative splicing detection Gene structure prediction and
alternative splicing

F,W

Transcript Assembly program [20] http://sapiens.wustl.edu/�zkan/TAP/ Predominant and alternative gene
structures identified

Gene structure prediction and
alternative splicing

F,W

prot4EST http://zeldia.cap.ed.ac.uk/PartiGene/ ESTs to protein multiple sequence alignments Protein alignment F
miraEST [50] http://www.chevreux.org/projects_mira.html Human SNP discovery SNP discovery F,W
SNP discovery from ESTs http://www.atgc.org/ To find SNP candidates in ESTassemblies SNP discovery F,W
JESAM [97] http://corba.ebi.ac.uk/EST/ ESTalignments and clusters Visualization of clusters F,W
SpliceNest [98] http://splicenest.molgen.mpg.de/ Visualization of gene splicing from ESTs Visualization F,W

*F, free for academic users;W, web interface available.
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for many organisms as a low-cost alternative to

genome sequencing or to complement genome

sequencing projects by early characterization of the

transcriptome. There are currently numerous data-

bases to store EST data and an overwhelming number

of tools for their analyses. However, a critical evalua-

tion of different procedures and methods, including

EST clustering, assembly, consensus generation and

tools for DNA or protein downstream annotation on

benchmark data sets, is lacking. Such an evaluation

will guide researchers to choose appropriate tools,

depending on the nature and extent of the EST data

sets being analysed and the biological questions being

addressed, such that they can adopt or develop in-

house, complete or semi-automated approaches.

In the case of high-throughput EST analysis there is

a need for integrated, automated approaches enabling

EST data mining for the biologically useful informa-

tion across disciplinary boundaries. Moreover,

ESTs have diverse applications, and the question

being addressed will determine the choice of methods

or pipelines to be used. As the objective of individual

methods and tools can vary substantially, it is difficult

to evaluate all of them using a common platform and

choose the most appropriate ones for individual

projects. This is particularly true of assembly programs

(CAP3 and Phrap), several of which have been

developed for genome sequences generated by a

shotgun approach rather than for EST data. New

generation algorithms, such as Xsact/Xract [51] and

CLU [44] have been developed specifically for EST

clustering and assembly and will continue to play a

central role in the analysis of large data sets, although

they are still to be incorporated into existing pipelines.

With the rapid convergence of various technol-

ogies crossing the ‘omics’ barrier for holistic solutions

to complex biological questions, the analysis of EST

data sets will continue to be indispensable in many

areas of biomedicine and biotechnology.
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